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Abstract

This paper establishes that potential coupling exists only for second and third length dependencies. The
relationship between both lengths of potential coupling is examined and concludes with the recommendation
that, for modification-resilient sets, potential coupling of second length dependencies should be minimised
and potential coupling of third length dependencies should be maximised.
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1. Introduction

In [2] the potential coupling of a primary subset was defined as a subset of the Cartesian product of all the
elements of the associated disjoint primary set with themselves and with the elements of violational subset
(or rather, the cardinality thereof). This can be used to model, for example, all possible dependencies within a
software system whose subsystems correspond to disjoint primary sets and whose violational elements
correspond to those program units visible outside their subsystems (and thus towards which dependencies
can be formed).

Such a Cartesian product can also be viewed as 2-tuples of the relation R(x, y) where x and y are program
units and R is the dependency relation between them, the dependency here being a direct dependency rather
than an indirect one. This can be extended, such that the relation R(x, y, z) represents x depends on y which in
turn depends on z, or transitively that x indirectly depends on z; and thereafter extended to the limit of the
number of elements in the entire set, R(e;, e, ..., €,).

Rather than examining potential coupling in terms of the number of direct dependencies between elements,
this paper examines potential coupling in terms of the number of indirect dependencies between elements.

This paper considers sets of absolute information-hiding only.

2. Dependencies and lengths

Let us begin by considering actual dependencies, as opposed to potential dependencies. In figure 1, we see
eight elements within two disjoint primary sets and a dependency represented as a tuple spanning six
elements; the dark elements are violational, the light, information-hidden. As such a dependency is therefore
a 6-tuple of the relation R(e;, e, e;, e, €5, e5), we shall say that such a dependency is of length six. Let us use
the short-hand Lx for a relation of x; the dependency in figure 1 is therefore an L5 dependency.
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Figure 1: A dependency of five dependencies

We note that the L6 dependency in figure 1 is a simple dependency: we are not interested in counting
dependencies on elements from themselves.

When we consider potential coupling, however, the actual tuple in figure 1 becomes just one tuple in a
much larger set, potential coupling encompassing all possible, allowable tuples of elements - always
respecting information-hiding - between all possible, allowable elements. The question then arises: how long
is the shortest dependency between any two elements in a set?

Figure 2: A potential dependency between two information-hidden elements

By definition, an dependency between two elements is a 2-tuple. We can thus say that the potential
coupling studied so far is potential coupling of two elements or L2 potential coupling. (Note that, throughout
these papers, wherever unqualified potential coupling is mentioned, L2 potential coupling is understood.) Yet
L2 potential coupling does not exhaust all possible, unique dependencies within a set. Take figure 2, for
example, where again the dark elements are violational, the light, information-hidden. There is clearly a
potential L2 dependency between element A2 and B1, as B1 is a violational element and so all other
elements may form L2 dependencies towards it.

What about elements A2 and B2? Both these elements are information-hidden within their respective
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regions and so, by definition, there can be no L2 tuple established comprising both elements. It is possible,
however, to join the elements via the L3 tuple (A2, B1, B2). This is a valid 3-tuple, though not one included
in the L2 potential coupling. Let us therefore define L3 potential coupling set to be 3-tuples of the relation
R(x, v, z) such that the relation R(x, y) and R(y, z) represent the previously-defined L2 potential coupling set.

So is there any L3 or higher potential coupling?

It can be shown that L2 and L3 potential coupling do in fact exhaust all possible shortest dependencies in a
set (see proposition 6.5); unlike actual dependencies which may be enormously long depending on the size of
the set, the maximum length of a shortest dependency in a set (as defined in [D1.1] - [D1.5] of [2]) is
three.

This reveals the unpleasant reality that information-hiding exists within an absolute information-hiding
context only for L2 dependencies; when L3 are considered, all elements are potentially dependent on all
others.

3. The significance of L3 potential coupling

Why investigate L3 potential coupling?

Here we must again step outside encapsulation theory to examine change propagation probability. Let us
take a simplistic view of set modification.

Modification event
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Figure 3: Element 4 undergoes a modification event

Consider a dependency of elements in which any particular element can undergo a, "Modification event."
There exists a probability between each element in the dependency that a modification event at one element
can cause a modification event at the previous element. This means that a modification event at element x can
cause a modification event at element x-/ which can in turn cause a modification event at element x-2, and so
on.

Taking this view, it is easy to prove that, given a modification event at element x, the probability of a
modification event cannot increase with distance from the modified element (see proposition 6.8). The laws
of probability state, in essence, that the modification probabilities must be multiplied with each element
traversed from the original, modified element, and as these probabilities are always between 0 and / then the
probability of ripple modification will usually decrease with each element traversed. Thus in figure 3 a
modification event occurs at element 4; it is more probable that this modification event will propagate to
element 3 than to element 2, and it is more probable that the modification event will propagate to element 2
than to element /.

This result should not be overstated. We have discussed neither the nature of the modification nor the
nature of probabilistic dependency. In a real-world set, such as a computer system, if the modification is as
extreme as deleting a program unit, then those dependent program units will definitely be impacted (with a
probability of 7). Each program unit further out from the deletion will, however, offer some buffering
capability: if program unit B just reads a number from program unit C, then after the deletion of C, B could



Page 4

be updated to hard-code the number, and thus those program units dependent only on B should not be
impacted by the deletion of C. A great deal more research on change propagation probability has been done
than is presented here (see [5] and [6]).

We can surmise, however, that a set of n elements formed predominantly of L2 dependencies will suffer
greater from propagated modifications than one formed predominantly of L3 dependencies, which in turn
will suffer greater than one formed predominantly from L4 dependencies, etc.

As we have seen, potential coupling comes in only two lengths: L2 and L3. If we wish to design sets
resilient to propagated modification, it would seem prudent both to minimise L2 potential coupling and
maximise L3 potential coupling.

4. Maximising L3 potential coupling

In [2] we concentrated on minimising L2 potential coupling and found that the number of disjoint primary
sets r;, that isoledensally minimises a uniform set's L2 potential coupling is given by:

n
rild:\/;

The question is, then, what number of number of disjoint primary sets isoledensally maximises a uniform
set's L3 potential coupling? First we must derive the equation for the L3 potential coupling of a uniform set
(see proposition 6.6) and then we must find its maximum (see proposition 6.7). When we do this, we find
that the number of disjoint primary sets r;; ;; that isoledensally maximises a uniform set's L3 potential

coupling is given by:
_|n
Froia™ q

As we can see, this is precisely the same as the number of regions that minimise L2 potential coupling;
thus when we minimise L2 potential coupling, we maximise L3 potential coupling. This highly desirable
state of affairs becomes intuitively appreciable when we consider a law of potential coupling that states that
the sum of L2 and L3 potential couplings must be conserved, or (see proposition 6.5):

|s*(G)|l+]s*(G)|=k
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This implies that when we increase one, we decrease the other, and so when one is minimised, the other
must be maximised. Figure 4 shows both L2 and L3 potential coupling as 100 elements are evenly distributed
over an increasing number of regions with a specific violation density of 1.
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Figure 4: Potential coupling of L2 (points) and L3 (continuous line) potential coupling.

If L3 potential coupling is to be maximised as L2 potential coupling is to be minimised, it is of interest to
investigate the ratio of the two, that is, to establish how many potential L3 dependencies can be established
for each L2 dependency. It can be shown that such a ratio is calculable for an indefinitely large (in number of
elements), uniformly distributed set (see proposition 6.12), given the number of regions, r, and hidden
density, A

u ‘

lim
n—»oo‘s ‘ r—i-/\l r)

Thus for a uniformly distributed set of /0 disjoint primary sets with a hidden density of 0.75, this equation
tells us that for every 7 potential L2 dependency, there are 2 potential L3 dependencies.

For sets with a large number of regions, this simplifies to the approximation (see proposition 6.13):

lim S?z(G)|~ A

n—>oo|si(G)| 1—-A

Thus for a large set of hidden density of 0.75, there will be 3 potential L3 dependencies for each potential
L2 dependency.

A further variation, finally shows that (see proposition 6.14):

im 12(G) _|n(G)
n—-wls2(G) |p(G)

This yet again highlights the benefits in increasing the number of hidden elements and decreasing the
number of violational elements. Figure 5 shows a set of the L3/L2 potential coupling ratio as a function of
increasing hidden density (as a percentage), given /00 elements uniformly spread over /0 disjoint primary
sets, the lesson being: the higher the hidden density, the more potential L3 dependencies there are for every
L2 dependency.
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Figure 5: L3 potential coupling divided by L2 potential coupling as a function of increasing hidden
density

6. Conclusions

Potential coupling comes in two forms: that with dependencies represented by 2-tuples (L2 potential
coupling), and that with dependencies represented by 3-tuples (L3 potential coupling). L2 potential coupling
is isoledensally minimised when L3 potential coupling is isoledensally maximised.

7. Author's note

This is an unusual paper in this series, giving prominence to a proposition - proposition 6.8 - which lies
outside the scope of encapsulation theory. Although, as mentioned earlier, the proposition should not be over-
exaggerated, it nevertheless hints at the core benefit of encapsulation within computer programs.

Given that the probability of a propagated modification event between real program units will usually be
less than /, then the shortest dependency dependencies between program units will be those with the highest
probability of propagating a modification event. Thus minimising the number of shortest dependencies
(given the isoledensal constraint) also minimises the probability that any modification event will propagate
along these maximally-probable dependencies. These shortest dependencies are just the L2 potential
coupling, hence the interest in studying L2 potential coupling.

Minimising the overall probability of modification event propagation cannot, however, be the goal of
encapsulation (if we put aside qualitative encapsulation for a moment and concentrate on the quantitative). It
is clear from proposition 6.8 that such a minimisation is achieved by putting all program units into one
subsystem and ensuring that actual dependency dependencies are length-maximised, rendering encapsulation
unnecessary.

So what is the benefit of encapsulation? Encapsulation's benefit is in minimising the number of potential
dependencies with the highest probability of modification event propagation. It is via this probability
management that encapsulation seeks to limit the cost of modification.

Given that a recent survey of open-source Java projects showed the vast majority of systems having a
hidden density of just 0.25, L3 potential coupling seems to be a highly squandered resource in modern
programming practice.
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8. Appendix A

8.1 Definitions
[D6.1] The length of a dependency of x elements is denoted by Lx.

[D6.2] The Lx potential coupling of set G, written s"(G), is the number of n-tuples of the relation R(e;, e,
..., €,) such that the relation R(e,, e,) represents the L2 potential coupling set.

8.2 Propositions

Proposition 6.1.

Given a set G as defined in [D1.1] - [D1.5] of [2], of r disjoint primary sets and of information-hiding
violation |V| , and given that the " disjoint primary set K; contains ‘K i’ elements and has an
information-hiding violation of |v (K )| , the L2 potential coupling of G is given by the equation:

s (G)=D |k [ (K |- 1+[V]-|v (K )
i=1
Proof:
By proposition 1.2 in [2], the internal potential coupling |s,,(Q,) is given by:
sin(Qi):‘Ki|(|Ki_1) (1)

By proposition 1.3.11 in [2], the internal potential coupling of set G, |s, n(G)‘ , s the sum of the internal
potential coupling of Q;, or:
sm<G)\=il sa(Q) @D
Substituting (ii) into (i) gives:
|s,.n(G)\=i1 K |(|K|-1) i)
By proposition 1.4 in [2], the external potential coupling |s,.(Q;)| of Q;is given by:

s Q=K ([VI=r () Gv)

By proposition 1.3.12 in [2], the external potential coupling of set G,

:‘Ki

5.(G)| . is the sum of the
external potential coupling of Q,, or:

su(GI=2 s Q)] W

i=

r
1

Substituting (v) into (iv) gives:

SeX(G)‘:;|Kl|(|V|_‘V<KI)‘) (Vl)

By proposition 1.3.17 in [2], the potential coupling of set G, written |52(G)‘ , is the sum of the internal
and external potential coupling of G, or:
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s°(G)|=

Sin(G)|+

s, (G| (viD)

Substituting (iii) and (vi) into (vii) gives.

(‘V|_‘V(Ki)

|s2<G>|=2\Ki|<|K,-—1>+§ K, )

—1+|V|-|v(K)))

= ;‘KMK;

QED

Proposition 6.2.

xxx Need to completely re-write this proposition ...

Given a set G as defined in [D1.1] - [D1.5] of [2], of r disjoint primary sets, of information-hiding
| H | and given that the i disjoint primary set K; contains ‘K i| elements and has an information-hiding
of |h( K l)| , the number of external elements, x, towards which K; may direct L3 dependencies towards is
given by:
X = dffy_|h(5ﬂ)p

Proof:

By definition, the number of elements external to K; is the sum of the numbers of elements in all
disjoint primary sets except K;, or:

r

num. elements external to K; = Z |K j‘
J=1Aj#i

But elements in K; may not form L3 dependencies towards all these other elements, as some may be
information violational; K;may only form L3 dependencies towards information-hiding elements.

By definition, the x we seek is the number of information-hiding elements external to K;, which is the
sum of the numbers of information-hiding elements in all disjoint primary sets except K, or:

x= > |n(K))

j=1nj#i

By definition, the information-hiding of the entire set, |[(G)| , is the sum of the information-
hiding of all its disjoint primary sets:
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|h<G>|=§ h(K)

= (K )|+ [h(K,)+...+|r(K,)

If we consider the i disjoint primary set K; in this sequence, we can write:
h(G)| =
h(K,)|+[h(K,)[+...
+r(K,_ )|+ r(K )+ |h(K
+h(K,)

)|+...

i+1

And thus,
h(K )|+ (K, +...
+h(K,_ )|+ h(K, )|+ (K,
= |h(G)[-h(K)
But,
h(K,)|+[h(K,)[+...
+h(K,_ )+ h(K,, ) |+..+|h(K))

r

= Z ’h(Kj)‘ =X

J=1Aj#i
Therefore,
x= (h(G)-|n(K)

)

QED

Proposition 6.3.

Given a set G as defined in [D1.1] - [D1.5] of [2], of r disjoint primary sets and of information-hiding
|H | , and given that the i disjoint primary set K; contains ‘K i| elements and has an information-hiding

of |h( K ,)| , the L3 potential coupling of Q; is given by the equation:
5* (Q)|=[K |11 -[ (K.

Proof:
By definition, the L3 potential coupling of a disjoint primary set is the number of L3 dependencies formed
out of that disjoint primary set towards the information-hidden elements of all other disjoint primary sets.

The number of L3 dependencies formable out of disjoint primary set K; is the number of tails (elements
within K;) multiplied by the number of external heads (information-hidden elements towards which K; may

direct L3 dependencies).

But K; contains |K i| elements and by proposition 6.2 the number of external elements towards which K;
may direct L3 dependencies is given by:

OI{L_‘h(BQ))

Therefore the L3 potential coupling s°(K;) of K; is given by:
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H‘_|h(Ki))

|s*(0,)]=|K]|(

QED

Proposition 6.4.

Given a set G as defined in [D1.1] - [D1.5] of [2], of r disjoint primary sets and of information-hiding
|H | , and given that the " disjoint primary set K; contains ‘K i‘ elements and has an information-hiding

of |h( K ,)| , the L3 potential coupling of G is given by the equation:

(G )= K -l )

Proof:

By proposition 1.3.19 in [2], the L3 potential coupling of set G is the sum of the L3 potential coupling of
all its primary sets, or:

|s° (G)|=Z (o))

By proposition 6.3, the L3 potential coupling of K; is given by the equation:
|s° (k)| =|K | (H|-|n(K)) i)

Substituting (ii) into (i) gives (i) gives:

|s3<G>I=Z\Ki|<

H|-|n(K,))

QED

Proposition 6.5.

Given a set G as defined in [D1.1] - [D1.5] of [2], of r disjoint primary sets with an information-hiding
of |H | and an information-hiding violation of |V| , and given that the /" disjoint primary set K; contains
‘K i‘ elements and has an information-hiding of |h( K [) and an information-hiding violation of

|v (K i) , the L2 and L3 potential couplings of G combined exhaust all possible potential coupling
dependencies in G.
Proof:

By proposition 1.1 of [2], the maximum possible number of dependencies between the n elements of an

unencapsulated set is given by:
[Snax(G)|=n(n=1) @)

By definition, all Lx dependencies (where x > 1) are composed of x L2 dependencies. Therefore (i)
represents the maximum possible number of dependencies in any set G.

max

By proposition 6.1, the L2 potential coupling of G is given by the equation:

\s2<c>\=§|1<,»<

By proposition 6.4, the L3 potential coupling of G is given by the equation:

K|-1+|V|-v(K,)) (i)
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|s3(G)|=§\K-(\HI—Ih(K,»)I) (iii)

Adding (ii) and (iii) gives:

K;

\s2<G>\+|s3<G>I=§|Ki|< —1+\v|—|v<1<i>|>+§|Ki\<|H|—\h<Ki>\>

— 1+ V|- (K )|+|H|-|r (k) @)

= SIKIK,
By definitions [D3.6] in [4], xxx need to revisit this:
‘Ki|:|h(Ki)‘+‘V<Ki)‘ W)
Gl=n=[H[+IV] i)

Substituting (v) and (vi) into ((iv) gives:

(

K|-1+n—|K,

26+ (G- I, |

I

= Z‘Ki

i=1

(n—1) (v

By proposition 1.3.5 in [2], the order of G is the sum of the orders of K; or:

Sk,

=pn  (viii)
Substituting (viii) into (vii) gives:

s (G)|+]s*(G)l=n(n-1)

This is the same as the maximum number of dependencies in G given by (i) so the L2 and L3 potential
couplings of G combined exhaust all possible potential coupling dependencies in G.

QED

Proposition 6.6.

Given a uniformly distributed set G as defined in [D1.1] - [D1.5] of [2], of n elements and of r disjoint
primary sets, with an information-hiding violation of |V| and given that the i" disjoint primary set K; has

an information-hiding violation of d, the L3 potential coupling |5’ (G)‘ is given by:

sf,(c)|:n(—§+n—(r—1)d)

Proof:
By proposition 6.4, the L3 potential coupling of G is given by the equation:

r

s’ (G|=2 |k |(|H|-|n (k) @

i=1
By definition [D3.6] in [4],
K=k

+‘V(Ki)




(K=K = (K| i)
By definition [D1.14] in [2],
d=|v(K,)| (i)
K, \:? (iv)
Y
r
V[=dr
Substituting (iii) and (iv) into (ii) gives:
h(K,) :%—d (vi)
Also by definition [D3.6] in [4],
Gl=n=|H|+|v|

\H|=n—|V|  (vii)
Substituting (v) into (vii) gives:
\H|=n—dr (viii)
Substituting (vi) and (viii) into (i) gives:
s (GI=2 |k,
i=1

= Z‘Kz

i=1

(n—dr—£+d)
r

(—%—Irn—(r—l)d) (ix)

By proposition 1.3.5 in [2], the order of G is the sum of the orders of K; or:

Z |K i‘z n )
i=1
Substituting (x) into (ix) gives:

s3(G>:n(—§+n—(r—1)d)

Proposition 6.7.
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QED

Given a uniformly distributed set G as defined in [D1.1] - [D1.5] of [2], of n elements and of r disjoint
primary sets, with each disjoint primary set having an information-hiding violation of d, the number of

disjoint primary sets r;;, that maximises the set's L3 potential coupling is given by:

n

i d

Proof:

By proposition 6.6, the L3 potential coupling ‘sz (G)| of a uniformly distributed set is given by:
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si(G)|=n(—?+n—(r—l)d)

To find the number of disjoint primary sets that maximise the L3 potential coupling, differentiate with
respect to r and set to zero:

3G =L [ n(=L4n—(r—1)d)|=0
or or r
= O (—Lyp—(r—1)d)
or r
n
= S—d
r
= n—rd
2 N
R
d
—
ild d

QED

Proposition 6.8.

Given a dependency of j elements, A;, and given that g>m, the probability that a modification event at
element £ will cause a modification event at element k-m is greater than or equal to the probability that the
event at element k will cause a modification event at element k-g.

Proof:
Let A; be a dependency of j elements.
Let E; be a modification event at element j.

Let the probability exist that modification event E; causes modification event E;; such that if £, is
completely independent of E; then this probability is 0 and if E;; is completely dependent on E; then this
probability is /, all values in-between signifying partial dependence. Let this probability that event E; causes
event E;; be denoted by P(E,.)).

Letk, g and m be such that m < g < k <j.
Consider modification event E;.
The probability that this event will cause event E; ; is by definition P(Ey ;).

The probability that event E;; will then cause further event E, is conditional upon whether event Ey
actually takes place. By the rules of conditional probability, the probability that both E; ; and E;., take place is
given by:

P(E _1andEk_2)=P(Ek_l)-P(Ek_z |Ek—1)

k

Where P(E,_,|E,_1) is the probability that event E., occurs given that event E;.; occurred. This is
also a number between 0 and /.

Similarly, the probability of E, ; is given by:
P(Ex_iandE,_,and Ey_3)=P(E_1).P(E¢_5|Ec_1). P(Ec | Exciand By ) ()
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Let o, Dbe the conditional probability P(E, | Ei; and E; and ... and E; ;). Thus we can re-write (i) as:
3
P(E, ,andE,_,andE, .)=P(E, ,).[ [«
i=2
And in general we can write:

P(E, ,andE, ,and..andE, .)=P(E, ,).| | «

- 1
Consider the two cases m and g:

P(E, ,andE, ,and..andE, ,)=P(E, ,).]] «

Qo

P(E, ,andE, ,and..andE, ,)=P(E, ,).] ]« (i

Il
N

As m < g let us define:
g=m+j (@1v)

Substituting (iv) into (iii) gives:

P(E,,andE, ,and..andE, ,andE, . ,and..andE, .., )=P(E,).[T«

m+1

Dividing (ii) by (v) gives:

P(E._,andE,_,and..andE,_ andE, . and..andE,_

P(E,_,andE, ,and..andE,_)

k-1 m+j))_ i=2

As 0<x,<1Vi then

m+ j

Il «<1 i)

i=m+1

Thus (vi) proves that the probability that a modification even at element k will propagate to element k-q is
less than or equal to the probability that the event will propagate to element k-m.

Thus the probability that a modification event at element k will cause a modification event at element k-m
is greater than or equal to the probability that the event at element k will cause a modification event at
element &-g.

QED

Proposition 6.9.

Given a uniformly distributed set G as defined in [D1.1] - [D1.5] of [2], of n elements and of r disjoint
primary sets, and of information-hiding density of A , the specific information-hiding violation, d, is given
by:
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g=" (1-21)
r

Proof:
By definition [D1.14] in [2]:

d :U )

r
By definition [D3.6] in [4],
n=|G|=|H|+|V|

By definition [D5.3] in [3],

b
n

\H|=An (i)
Substituting (iii) into (ii) gives:
V|=n—An  (v)
Substituting (iv) into (i) gives:

d:n—)\n

r

n(l1—2a)

QED

Proposition 6.10.

Given a uniformly distributed set G as defined in [D1.1] - [D1.5] of [2], of n elements and of r disjoint

primary sets, and of information-hiding density of A , the L3 potential coupling sz (G)| is given by:

S(G)=n M)

r

Proof:

s (G)| is given by:

u

By proposition 6.6, the L3 potential coupling

S(G)|=n(~24n—(r—1)d)

r

si(G)|=n(—?+n—dr+d) @)

By proposition 6.9, the specific information-hiding violation, d, is given by:

_n1-4)

d (ii)

Substituting (ii) into (i) gives:
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si(G)|=n(—%+n—n(l—)\)+M)

n(l—)\))

= n(—Z+na+
r

= nz(—%+/\+(1;—2\))
-1 +r/\—|-(1—7\))
A(rr—l))

— n2(

= nZ(
QED

Proposition 6.11.
Given a uniformly distributed set G as defined in [D1.1] - [D1.5] of [2], of n elements and of r disjoint
SQ(G)‘ is given by:

u

primary sets, and of information-hiding density of A , the L2 potential coupling

|SZ(G)‘:H(I’Z—I’+I’IV(1—r)\)—n(]_)\))

Proof:
By proposition 1.8 in [2]:

sj<G)\=n<§—1+(r—1)d)

= n(Z-1+dr-a) @
r
By proposition 6.9, the specific information-hiding violation, d, is given by:

g="1=A g
r

Substituting (ii) into (i) gives:
n(l1-2)

sj(G)|=n(?—1+n(l—/\)—f)

SZ(G)‘:n(n—r—i—nr(l—?\)—n(l—/\))

QED

Proposition 6.12.

Given a uniformly distributed set G as defined in [D1.1] - [D1.5] of [2], of n elements and of r disjoint
primary sets, and of information-hiding density of A , the limit of the ratio of L3 potential coupling to L2

potential coupling as the set grows indefinitely large is given by:
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lim 520G a(r—1)
n—o|s3(G)| r+A(l-r)

Proof:
By proposition 6.10, the L3 potential coupling |si (G)| is given by:

Alr—1)

5, (G)=r’( )G

By proposition 6.11, the L2 potential coupling |s5 (G)‘ is given by:
n—r+nr(1—A)—n(1-2)

5:(G)|=n( - ) i)
Dividing (i) by (ii) gives:
QA(I"—I)
‘Sz(G)|: . r )
s2(G) (n—r—lrnr(l—?\)—n(l—)\))
r
Alr—1)
r
= - lr(ea)—(1—a) W
n
’
Taking the limit of (iii) as » tends to infinity gives:
Alr—1)
lim Si(G)|: r
n_>oo|sj(G)| 1+r(1=A)—(1-2)
r
Alr—1)
B r
© 1+ r—rA—1+2A
r
Alr—1)
B r
rA(l=7)
r
_A(r—1)
CrA(1-r)

QED

Proposition 6.13.

Given a uniformly distributed set G as defined in [D1.1] - [D1.5] of [2], of n elements and of r disjoint
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primary sets, and of information-hiding density of A , the limit of the ratio of L3 potential coupling to L2
potential coupling as the set grows indefinitely large, given a large number of disjoint primary sets, is given
by:

Proof:

By proposition 6.12, the limit of the ratio of L3 potential coupling to L2 potential coupling as the set grows
indefinitely large is given by:

lim [52(G)|_a(r=1)
n—)oo‘si(G)‘ r+A(l=r)

®

If r>1 then:
r~r—1 (i)

Substituting (ii) into (i) gives:

lim si(G)
n—ols’(G)

_A
T 1=

I

‘ Ar
|

r—Ar

QED

Proposition 6.14.

Given a uniformly distributed set G as defined in [D1.1] - [D1.5] of [2], of n elements and of r disjoint
primary sets, and of information-hiding density of A , the limit of the ratio of L3 potential coupling to L2
potential coupling as the set grows indefinitely large, given a large number of disjoint primary sets, is given

by:
|

N —

V|

52(G)

u

52(G)

u

lim
n — oo

Proof:
By proposition 6.13, the limit of the ratio of L3 potential coupling to L2 potential coupling as the set
grows indefinitely large, given a large number of disjoint primary sets, is given by:
3
llm Su ( G )| ~ A
n—-o|s2(G)| 1-A

By definition [D5.3] in [3]:
A= M (ii)
n
By definition [D3.6] in [4],
n=|G|=|H|+|V| i)
Dividing (iii) by n gives:
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1= H + M @iv)
n n
Substituting (ii) into (iv) gives:
L
n
uz 1-A  (v)
n

Substituting (ii) and (v) into (i) gives:

QED
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